MATHEMATICS SOLUTION
 (CBCGS SEM - 4 DEC 2018) BRANCH - IT ENGINEERING

1a) The equations of lines of regression are $x+2 y=5$ and $2 x+3 y=-8$.
Find (i)means of x and y, (ii)coefficient of correlation between x and y.

Ans. lines of regression are $x+2 y=5$ and $2 x+3 y=-8$.
$\therefore y=-\frac{1}{2} x+\frac{5}{2} \rightarrow$ (1) and $\quad y=-\frac{2}{3} x-\frac{8}{3} \rightarrow$ (2)
Let $\mathrm{b}_{1}=-\frac{1}{2}$ and $\mathrm{b}_{2}=-\frac{2}{3}$
Since $\left|b_{1}\right|<\left|b_{2}\right|, \mathrm{b}_{\mathrm{xy}}=\mathrm{b}_{1}=-\frac{1}{2}=-\frac{3}{2} \rightarrow$
Hence, equation (1) is regression equation of y and x type and equation (2) is regression equation of X and Y type.

From (1) and (2), $-\frac{1}{2} x+\frac{5}{2}=-\frac{2}{3} x-\frac{8}{3}$

$$
\begin{aligned}
& \therefore \frac{2}{3} x-\frac{1}{2} x=-\frac{8}{3}-\frac{5}{2} \\
& \therefore \frac{1}{6} x=-\frac{31}{6} \\
& \therefore x=-31 \therefore \bar{x}=-31
\end{aligned}
$$

Substituting $x=-31$ in (2), $y=-\frac{2}{3}(-31)-\frac{8}{3}$

$$
\therefore \mathrm{y}=18 \quad \therefore \bar{y}=7
$$

Now, $\mathrm{r}= \pm \sqrt{b_{y x} \cdot b_{x y}} \times$

$$
\begin{aligned}
& = \pm \sqrt{\frac{-1}{2} \times \frac{-3}{2}} \text { (from3) } \\
& = \pm 0.8660
\end{aligned}
$$

Since, $b_{y x}$ and $b_{x y}$ are both negative, ' r ' is negative. $\therefore \mathrm{r}=-0.8660$

1b) Show that $97 \mid\left(2^{48}-1\right)$.
Ans. We know, $2^{11}=2048=97 \times 21+11$
$\therefore 2^{11} \equiv 11(\bmod 97)$
$\therefore\left(2^{11}\right)^{4} \equiv 11^{4}(\bmod 97) \longrightarrow(1)$
But, $11^{4} \equiv 14641=97 \times 151-6$
$\because 11^{4} \equiv(-6)(\bmod 97) \longrightarrow(2)$
From (1) and $(2),\left(2^{11}\right)^{4} \equiv(-6)(\bmod 97)$
$\therefore 2^{44} \equiv(-6)(\bmod 97)$
Multiply both sides by 2^{4},
$\therefore 2^{44} \times 2^{4} \equiv\left(-6 \times 2^{4}\right)(\bmod 97)$
$\therefore 2^{48} \equiv-96(\bmod 97)$
$\therefore 2^{48} \equiv(-96+97)(\bmod 97)$
$\therefore 2^{48} \equiv 1(\bmod 97)$
$\therefore 971\left(2^{48}-1\right)$

1c) The probability density function of a random variable X is zero except at $x=0,1,2$ and $p(0)$ $=3 k^{3}, p(1)=4 k-10 k^{2}, p(2)=5 k-1$. Find (i) k and (ii) $p(0<X \leq 2)$.

Ans. For any probability mass function, $\sum_{i=-\infty}^{\infty} \quad p_{1}=1$
$\therefore p(0)+p(1)+p(2)=1$
$\therefore 3 \mathrm{k}^{3}+\left(4 \mathrm{k}-10 \mathrm{k}^{2}\right)+(5 \mathrm{k}-1)=1$
$\therefore 3 \mathrm{k}^{3}+4 \mathrm{k}-10 \mathrm{k}^{2}+5 \mathrm{k}-2=0$
$\therefore 3 \mathrm{k}^{3}-10 \mathrm{k}^{2}+9 \mathrm{k}-2=0$
On solving, we get, $\mathrm{k}=1,2, \frac{1}{3}$
But, $0 \leq \mathrm{P}_{1} \leq 1$
OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

ENGINEERING
When $\mathrm{k}=1, \mathrm{p}(0)=3(1)^{3}=3$, which is not possible.
When $\mathrm{k}=2, \mathrm{p}(0)=3(2)^{3}=24$, which is not possible.
$\therefore \mathrm{k}=\frac{1}{3}$
$\therefore \mathrm{P}(0)=3 \times \frac{1}{3^{3}}=\frac{1}{9}$
$\therefore \mathrm{p}(1)=4 \mathrm{k}-10 \mathrm{k}^{2}=4\left(\frac{1}{3}\right)-10\left(\frac{1}{3}\right)^{2}=\frac{2}{9}$
$\therefore \mathrm{p}(2)=5 \mathrm{k}-1=5\left(\frac{1}{3}\right)-1=\frac{2}{3}$
The p.m.f is

X	0	1	2
$P(x-x)$	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{2}{3}$

$\therefore \mathrm{p}(\mathrm{x}<1)=\mathrm{p}(0)=\frac{1}{9}$
$\therefore \mathrm{p}(0<\mathrm{X} \leq 2)=\mathrm{p}(1)+\mathrm{p}(2)=\frac{1}{9}+\frac{2}{9}=\frac{1}{3}$
Hence,

$$
\mathrm{K}=\frac{1}{3} ; \mathrm{p}(x<1)=\frac{1}{9} \text { and } \mathrm{p}(0<\mathrm{X} \leq 2)=\frac{1}{3} .
$$

1d) Give an example of a graph which has

Ans:
(i) Eulerian circuit but not a Hamiltonian circuit

All the vertices are of even degree. Hence by theorem there is Eulerian circuit.
Eulerian circuit : abcdeca
The circuit is not Hamiltonian because there is no circuit which contains all the vertices only once.

OUR CENTERS :
(ii) Hamiltonian circuit but not an Eulerian circuit

All the vertices can be traversed only once. Hence there is Hamiltonian circuit. Hamiltonian circuit : abcdea
The degree of vertices b \& d are odd. Hence there is no Eulerian circuit.

2a) Find gcd $(2947,3997)$ using Euclidean Algorithm. Also find x and y such that $2947 x+3997 y=\operatorname{gcd}(2947,3997)$.
Ans. Part I : Let $\mathrm{a}=2947$ and $\mathrm{b}=3997$
Using Euclid Algorithm.

1)	3997 = $1 \times 2947+1050$	$\begin{aligned} & \therefore \mathrm{b}=1 \times \mathrm{a}+1050 \\ & \therefore \mathrm{~b}-\mathrm{a}=1050 \end{aligned}$
2)	$2947=2 \times 1050+847$	$\begin{aligned} & \therefore a=2 \times(b-a)+847 \\ & \therefore a=2 b-2 a+847 \\ & \therefore 3 a-2 b=847 \end{aligned}$
3)	$1050=1 \times 841+203$	$\begin{aligned} & \therefore b-a=1 \times(3 a-2 b)+203 \\ & \therefore b-a=3 a-2 b+203 \\ & \therefore 3 b-4 a=203 \end{aligned}$
4)	$847=4 \times 203+35$	$\begin{aligned} & \therefore 3 a-2 b=4 \times(3 b-4 a)+35 \\ & \therefore 3 a-2 b=12 b-16 a+35 \\ & \therefore 19 a-14 b=35 \end{aligned}$
5)	$203=5 \times 35+28$	$\begin{aligned} & \therefore 3 b-4 a=5 \times(19 a-14 b)+28 \\ & \therefore 3 b-4 a=95 a-70 b+28 \\ & \therefore 73 b-99 a=28 \end{aligned}$
6)	$35=1 \times 28+7$	$\begin{aligned} & \therefore 19 a-14 b=1 \times(73 b-99 a)+7 \\ & \therefore 19 a-14 b=73 b-99 a+7 \\ & \therefore 118 a-87 b=7 \rightarrow(8) \end{aligned}$
7)	$8=4 \times 7+0$	

$\therefore \operatorname{gcd}(2947,3997)=7$

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

Part II:

Given, $2947 x+3997 y=\operatorname{ged}(2947,3997)$
$\therefore \mathrm{ax}+\mathrm{by}=7 \longrightarrow(9)$
Comparing (8) \& (9), $x=118$ and $y=-87$
i.e, $x_{0}=118$ and $y_{0}=-87$ is the solution of $2947 x+3997 y=\operatorname{ged}(2947,3997)$
other solution are $x=x_{0}+\left(\frac{b}{d}\right) t$ and $y=y_{0-}\left(\frac{a}{d}\right) t$ where ' t ' is arbitrary $\& \mathrm{~d}=$ ged of $\mathrm{a} \& \mathrm{~b}$ i.e, $d=(a, b)$
$\therefore x=118+\left(\frac{3997}{7}\right) t$ and $y=-87-\left(\frac{2947}{7}\right) t$
\therefore Other solutions are $x=118+571 t$ and $y=-87-421 t$

2b) The four roots of unity $G=(1,-1, i,-i)$ forms a group under multiplication.
Ans. Let $\mathrm{a}, \mathrm{b} \in \mathrm{G}$
The composition table is

i	i	-i	i	-i
i	i	-i	i	-i
-i	-i	l	-i	i
i	i	-i	-i	l
-i	-i	i	i	-i

From above table, we observe,
$\mathrm{a} * \mathrm{~b}$ exists and $\mathrm{a} * \mathrm{~b} \in \mathrm{G}$.
\therefore *is binary operator in G.
G1:
Multiplication of complex number is associative.
\therefore * is associative.

G2:

From table, we observe, first row is same as the header.
$\therefore 1 \in \mathrm{G}$ is the identity.
\therefore identify exists.

G3:

From table, we observe, identify elements (i.e,1) is present in each row.
$\therefore 1^{-1}=1 ;(-1)^{-1}=-1 ; i^{-1}=-i ;(-i)^{-1}=i$
\therefore Inverse of each element exist and each inverse $\in G$.
\therefore Inverse exists.
Hence, G is group usual multiplication of complex number.

2c) Find whether the following graphs $G=(v, E)$ and $G^{\prime}=\left(v^{\prime}, E^{\prime}\right)$ are isomorphic? Justify.
$(1) v=\{a, b, c, d\} E=\{(a, b),(a, d),(b, d),(c, a),(c, b),(d, c)\}$
$(2) v^{\prime}=\{1,2,3,4\}, E^{\prime}=\{(1,2),(2,3),(3,1),(3,4),(4,1),(4,2)\}$.
Ans. Definition :
Two graphs $G(v, E) \& G^{\prime}\left(v^{\prime}, E^{\prime}\right)$ are isomorphic if

1) Number of edge between $v_{1} \& v_{2}$ is same as the number of edges between $v_{1}{ }^{\prime} \& v_{2}{ }^{\prime}$.
2) G and G^{\prime} have equal number of vertices.
3) G and G^{\prime} have equal number of edges.
4) Adjacency property is observed

Graph G'
OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

From the above two graphs

Graph G		
Number of vertices	4	
Number of Edges	6	
Vertex	Degree*of Vertex	Adjacent Vertices (Degree* in bracket)
a	2	b (1), d (1)
b	1	d (1)
C	2	$\mathrm{a}(2), \mathrm{b}(1)$
d	1	$\mathrm{C}(2)$

GRAPH 'G'		
Number of vertices	4	
Number of Edges	6	
	Degree* of Vertex	Adjacent Vertices (Degree* in bracket)
Vertex	1	$2(1)$
1	1	$3(2)$
2	2	$1(1), 4(2)$
3	2	$1(1), 2(1)$
4		

We observe in both the graphs, there are

1) Equal number of vertices.
2) Equal number of edges.
3) Four vertices with degree 3 .
4) Adjacency property is observed.

Hence, the given two graphs are isomorphic.

OUR CENTERS :

3a) Show that $\left(D_{8}, \leq\right)$ is a lattice. Draw its Hasse diagram.
(6)

Ans. D_{8} means divisors of 8.

$$
D_{8}=\{1,2,4,8\}
$$

The Hasse diagram of R is as shown

$$
\int_{0}^{4}
$$

We know the relation of divisibility is a partial order relation.
\therefore Set $\left(\mathrm{D}_{8}, \leq\right)$ is a poset.
The composition table of LUB (least upper bound) and GLB (greater lower bound) are,

\checkmark	1	2	4	8
1	I	2	4	8
2	2	2	4	8
4	4	4	4	8
8	8	8	8	8

	1	2	4	8
1	1	1	1	1
2	1	2	2	2
4	1	2	4	4
8	1	2	4	8

From the above two tables, we observe that every pair of elements of D_{8} has LUB (latest upper bound) and GLB (greatest lower bound)

Also, each LUB and GLB $\in \mathrm{D}_{8}$
Hence, ($\left.D_{8}, \leq\right)$ is a lattice.

3b) The local authorities in a certain city install 10,000 electric lamps in the streets of the city. If these lamps have an average life of 1000 burning hours with a standard deviation of 200 hours, how many lamps might be expected to fail (i)in the first 8000 burning hours? (ii) Between 800 and 1200 burning hours?

ENGINEERING
Ans. Mean $(\mathrm{m})=10000$
Standard deviation $(\sigma)=200$
$N=10000$
Let X denote the burning life of the electric lamp.
(i) P (lamps fail in the first 800 burning hours) $=\mathrm{P}(\mathrm{X}<800)$

$$
=\mathrm{P}\left(\frac{x-m}{\sigma}<\frac{800-1000}{200}\right)
$$

$$
=p(z<-1)
$$

$$
=0.5-\text { Area between ' } Z=0 \text { ' to }{ }^{\prime} Z=-1^{\prime}
$$

$$
=0.5-0.3413
$$

$$
=0.1587
$$

\therefore Number of lamps failing in the first 800 burning hours $=\mathrm{NxP}(\mathrm{x}<800)$

$$
\begin{aligned}
& =10000 \times 0.1587 \\
& =1587 \mathrm{lamps}
\end{aligned}
$$

(iii) P (lamps fail between 800 and 1200 burning hours $)=P(800<X<1200)$

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

$$
\begin{aligned}
& =P\left(\frac{800-1000}{200}<\frac{x-m}{\sigma}<\frac{1200-1000}{200}\right) \\
& =P(-1<z<1) \\
& =\text { Area between ' } z=0^{\prime} \text { to } \mathrm{z} z=-1^{\prime}+\text { Area between ' } z=0^{\prime} \text { to ' } z=1^{\prime} \\
& =0.3413+0.3413 \\
& =0.6826
\end{aligned}
$$

\therefore Number of lamps failing between 800 and 1200 burning hours
$=N \times P(800<X<1200)$
$=10000 \times 0.6826$
$=6826$ lamps
$3 c)$ Find inverse of $2^{-1}(\bmod 31)$ using Fermat's theorem.
Ans. 31 is a prime number
Let $\mathrm{a}=2$ and $\mathrm{p}=31$, We observe $p \nmid \mathrm{a}$
By Fermat's little theorem, $\mathrm{a}^{-1}(\bmod \mathrm{p}) \equiv a^{P-2}(\bmod \mathrm{p})$
$\therefore \quad 2^{-1}(\bmod 31) \equiv 2^{29}(\bmod 31)$
We know, $2^{5}=32=1 \times 31+1$
$\therefore \quad 2^{5} \equiv 11(\bmod 31)$
$\therefore\left(2^{5}\right)^{5} \equiv 1^{5}(\bmod 31)$
$\therefore 2^{25} \equiv 1(\bmod 31)$
Multiply both sides by 2^{4}.
$\therefore 2^{25} \times 2^{4} \equiv\left(1 \times 2^{4}\right)(\bmod 31)$
$\therefore 2^{29} \equiv 16(\bmod 31)$
$\therefore 2^{-1}(\bmod 31)=16$. (from $\left.1 \& 2\right)$

ENGINEERING

3d) Find the legendre's symbol of $\left(\frac{19}{23}\right)$.
(4)

Ans. $\left(\frac{19}{23}\right)$
Let $\mathrm{a}=19$ and $\mathrm{p}=23$, which is an odd prime.
We observe $p \nmid a$.
By Euler's critertion, $\left(\frac{a}{p}\right) \equiv \mathrm{a}^{(\mathrm{p}-1) / 2}(\bmod \mathrm{p})$
$\therefore\left(\frac{19}{23}\right) \equiv 19^{(23-1) / 2}(\bmod 23)$
$\therefore\left(\frac{19}{23}\right) \equiv 19^{11}(\bmod 23) \rightarrow(1)$
Now, $19 \equiv-4(\bmod 23)$
$\therefore 19^{2} \equiv(-4)^{2}(\bmod 23)$
$\therefore 19^{2} \equiv 16(\bmod 23)$
$\therefore 19^{2} \equiv(-7)(\bmod 23)$
$\therefore\left(19^{2}\right)^{5} \equiv(-7)^{5}(\bmod 23$
But, $(-7)^{5}=-16807=-730 \times 23-17$
$\therefore 1910 \equiv-17(\bmod 23)$
$\therefore 19^{10} \equiv 6(\bmod 23)$
Multiply both side by 19 ,
$\therefore 1910 \times 19 \equiv(6 \times 19)(\bmod 23)$
But, $6 \times 19=114=5 \times 23-1$

$$
\because 19^{10} \equiv(-1)(\bmod 23) \longrightarrow(2)
$$

From (1)\&(2), $\left(\frac{19}{23}\right) \equiv-1$, i.e, 19 is not a quadratic residue modulo 23.

OUR CENTERS :

4a) Calculate the coefficient of correlation between x and y from the following data .

x	12	9	8	10	11	13	7
y	14	8	6	9	11	12	3

Ans. let X and Y denote height of father and height of son respectively.

X	Y	$u_{i=} x_{i}$ -10	$v_{i}=y_{i}-9$	$u_{i}{ }^{2}$	$v_{i}{ }^{2}$	$u_{i} v_{i}$
12	14	2	5	4	25	10
9	8	-1	-1	1	1	1
8	6	-2	-3	4	9	6
10	9	0	0	0	0	0
11	11	1	2	1	4	2
13	12	3	3	9	9	9
7	3	-3	-6	9	36	18
	Total	0	0	28	84	46

Here, $\mathrm{n}=7$

$$
\begin{aligned}
& \text { Karl pearson's coefficient of correlation } r_{x, y}=r_{u, v}=\frac{n \Sigma u v-\Sigma u \Sigma v}{\sqrt{n \Sigma u^{2}-(\Sigma u)^{2} \sqrt{n \Sigma v^{2}-(\Sigma v)^{2}}}} \\
& =\frac{7(46)-(0)(0)}{\sqrt{7(28)-(0)^{2}} \sqrt{7(84)-(0)^{2}}} \\
& =\frac{322}{\sqrt{196} \sqrt{588}} \\
& =0.9485
\end{aligned}
$$

Hence, coefficient of correlation between height of father and height of son(r)=0.9485.

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

4b) Draw a connected graph for which every edge is a cut edge.
(3)

Ans. A cut edge set is a set of edges of a graph which, if removed(or "cut"), disconnects the graph(i.e, forms a disconnected graph). OR A cut - edge is an edge, which when removed increases the number of components.

A connected graph for which every edge is a cut edge is a TREE.
Graph (or Tree) in which every edge is a cut edge is as shown

4c) Show that any connected graph with ' $\mathrm{n}-1$ ' edges is a tree.
(3)

Ans. A tree is a connected graph without any cycles, or a tree is a connected non-cyclic graph.

Let T be a connected graph without any cycles.
Let n and ' e ' be the number of vertices and edges in T .
Let ' $\mathrm{e}=\mathrm{n}-1$ ".
For $\mathrm{n}=1$, $\mathrm{e}=1-1=0$ edge. i, e There is no edge which connects a vertex.
For $\mathrm{n}=2, \mathrm{e}=2-1=1$ edge. i.e, One edge connects two vertices.
For $\mathrm{n}=3, \mathrm{e}=3-1=2$ edges. i.e, Two edges connecting three vertices will not be cycle so it is a tree.

Tree T

4d) Can it be concluded that the average life span of an Indian is more than 70 years, if a random sample of 100 Indians has an average life span of 71.8 years with S.D of 8.9 years.

Ans. $\mathrm{n}=100(>30$, so it is large sample)
$\bar{x}=71.8 ; \mathrm{s}=8.9$

Step 1:

Null Hypothesis (Ho) : $\mu=70$ (i.e, the average life span of an Indian is 70 years)
Alternative Hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right): \mu>70$ (i.e, the average life span of an Indian is more than 70 year) (one tailed test)

Step 2:

Level of significance $($ LOS $)=5 \%($ Two tailed test $)$
LOS $=10 \%$ (one tailed test $)$
\therefore Critical value $\left(\mathrm{Z}_{\mathrm{a}}\right)=1.64$

Step 3:

Since sample is large,
S E. $=\frac{s}{\sqrt{n}}=\frac{8.9}{\sqrt{100}}=0.89$

Step 4:

Test statistic
$z_{\text {cal }}=\frac{\bar{x}-\mu}{S . E}=\frac{71.8-70}{0.89}=2.0225$

Step 5:

Since $z_{\text {cal }}>z_{a} H_{0}$ is rejected.
\therefore The average life span of an Indian is more than 70 years.

4e) Ten individuals are chosen at random from a population and their heights are found to be $63,63,64,65,66,69,70,71,70$ inches.
Discuss the suggestion that the mean height of population in 65 inches.

Ans. $n=10(<30$, so it is small sample $)$

Step 1:

Null Hypothesis $\left(\mathrm{H}_{0}\right): \mu=65$ (i.e, the mean height of the population is 65 inches)
Alternative Hypothesis $\left(\mathrm{H}_{0}\right): \mu \neq 65$ (i.e, the mean height of the population is not 65 inches) (Two tailed test)

Step 2:
LOS $=5 \%$ (Two tailed test)
Degree of Freedom $=\mathrm{n}-10=10-1=9$
\therefore Critical value $\left(\mathrm{t}_{\mathrm{a}}\right)=2.2622$

Step 3:

Values $\left(x_{i}\right)$	$d_{i}=x_{i}-67$	$d_{i}{ }^{2}$
63	-4	16
63	-4	16
64	-3	9
65	-2	4
66	-1	1
69	2	4
69	2	4
70	3	9
70	3	9
71	4	16
Total	0	88

$$
\bar{d}=\frac{\Sigma d_{i}}{n}=\frac{0}{10}=0
$$

$$
\therefore \bar{x}=\mathrm{a}+\bar{d}=67+0=67
$$

Since sample is small, $\mathrm{s}=\sqrt{\frac{\Sigma d_{i}{ }^{2}}{n}-\left(\frac{\Sigma d_{i}}{n}\right)^{2}}$
OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228

$$
\begin{aligned}
& =\sqrt{\frac{88}{10}-\left(\frac{0}{10}\right)^{2}} \\
& =2.9965
\end{aligned}
$$

$$
\text { S.E. }=\frac{s}{\sqrt{n}-1}
$$

$$
=\frac{2.9965}{\sqrt{9}}
$$

$$
=0.98888
$$

Step 4: Test Statistic

$$
\begin{aligned}
\mathrm{t}_{\text {cal }} & =\frac{\bar{x}-\mu}{S . E} \\
& =\frac{67-65}{0.98888} \\
= & 2.0227
\end{aligned}
$$

Step 5: Decision
Since $\left|t_{\text {cal }}\right|<t_{a}, \mathrm{H}_{0}$ is accepted.
\therefore The mean height of the population is 65 inches.
$5 a)$ Solve $x \equiv 5(\bmod 6), x \equiv 4(\bmod 11), x \equiv 3(\bmod 17)$.

Ans. $x \equiv 5(\bmod 6) \quad$ let $a_{1}=5$ and $m_{1}=6$
$\mathrm{x} \equiv 4(\bmod 11) \quad$ let $\mathrm{a}_{2}=4$ and $\mathrm{m}_{2}=11$
$x \equiv 3(\bmod 17) \quad$ let $\mathrm{a}_{3}=3$ and $\mathrm{m}_{3}=17$
Let $\mathrm{M}_{1}=\mathrm{m}_{2} \times \mathrm{m}_{3}=11 \times 17=187$
$\mathrm{M}_{2}=\mathrm{m}_{1} \times \mathrm{m}_{3}=6 \times 17=102$
$M_{3}=m_{1} \times m_{2} \times m_{3}=6 \times 11 \times 17=1122$

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

ENGINEERING
Let $\mathrm{M}_{1} x \equiv 1\left(\bmod \mathrm{~m}_{1}\right)$
$\therefore 187 x \equiv 1(\bmod 3) \longrightarrow(1)$
$\therefore 1 \equiv 187 x(\bmod 3)$
$\therefore 1 \equiv(62 x \times 3+x)(\bmod 3)$
$\therefore 1 \equiv x(\bmod 3)$
$\therefore x \equiv 1(\bmod 3)$
$\therefore x_{1}=1$
Similarly,
Let $\mathrm{M}_{2} x \equiv 1\left(\bmod \mathrm{~m}_{2}\right)$
$\therefore 102 x \equiv 1(\bmod 11) \rightarrow(2)$
$\therefore 1 \equiv 102 x(\bmod 11)$
$\therefore 1 \equiv(9 x \times 11+3 x)(\bmod 11)$
$\therefore 1 \equiv 3 x(\bmod 11)$
$\therefore 4 \equiv 12 x(\bmod 11)$
$\therefore 4 \equiv(1 x \times 11+x)(\bmod 11)$
$\therefore 4 \equiv x(\bmod 11)$
$\therefore x \equiv 4(\bmod 11)$
$\therefore x_{2}=4$
Similarly,
Let $\mathrm{M}_{3} x \equiv 1\left(\operatorname{modm}_{3}\right)$
$\therefore 66 x \equiv 1(\bmod 17) \rightarrow(3)$
$\therefore 1 \equiv 66 x(\bmod 17)$
$\therefore 1 \equiv(4 x \times 17-2 x)(\bmod 17)$
$\therefore 1 \equiv-2 x(\bmod 17)$
OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR
Contact - 9136008228
$\therefore-8 \equiv 16 x(\bmod 17)$ (multiply both side by -8)
$\therefore-8 \equiv(1 x \times 17-x)(\bmod 17)$
$\therefore-8 \equiv-x(\bmod 17)$
$\therefore x \equiv 8(\bmod 11)$
$\therefore x_{3}=8$
By Chinese Remainder Theorem, the solution of the given problem is
$x \equiv\left(a_{1} \mathrm{M}_{1} x_{1}+\mathrm{a}_{2} \mathrm{M}_{2} x_{2}+\mathrm{a}_{3} \mathrm{M}_{3} x_{3}\right)(\bmod \mathrm{M})$
$\therefore x \equiv(5 \times 187 \times 1+4 \times 102 \times 4+3 \times 66 \times 8)(\bmod 1122)$
$\therefore x \equiv 4151(\bmod 1122)$
$\therefore x \equiv(3 \times 1122+785)(\bmod 1122)$
$\therefore x \equiv 785(\bmod 1122)$
$x=785$ is one solution. General solution is given by, $x=785+1122 k$ where k is any integer

5b) Theory predicts that the proportion of beans in the four groups A, B, C, D should be 9:3:
3: 1. In an experiment among 1600 beans the numbers in the four groups were $882,313,287$ and 118. Using chi - square verify does the experimental results support the theory?

Ans. $\mathrm{N}=1600$;

Step 1;

Null Hypothesis $\left(\mathrm{H}_{0}\right)$: Distribution of beans is as per theory.
Alternative Hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right)$: Distribution of beans is not as per theory.

Step 2:

Level of significance $($ LOS $)=5 \%$
Degree of Freedom $=n-1=4-1=3$
\therefore Critical value $\left(x_{a}{ }^{2}\right)=7.815$

Step 3: Test Statistic.

Observed Frequency (0)	Expected Frequency(E)	$x^{2}=\frac{(0-E)^{2}}{E}$
882	$\frac{9}{16} \times 1600=900$	0.36
313	$\frac{3}{16} \times 1600=300$	0.56
287	$\frac{3}{16} \times 1600=300$	0.56
118	$\frac{1}{16} \times 1600=100$	3.24
	Total	4.72

$x_{c a l}^{2}=\Sigma \frac{(0-E)^{2}}{E}=4.72$
Step 4: Decision
Since $x_{\text {cal }}{ }^{2}<x a^{2}, H_{0}$ is accepted.
\therefore Distribution of beans is as per theory i.e, in the ratio 9:3:3:1.

5c) Let G be a group of all permutations of degree 3 on 3 symbols $1,2 \& 3$. Let $\mathrm{H}=\{\mathrm{I}(1,2)\}$ be a subgroup of G . Find all the distinct left cosets of H in G and hence index of H .

Ans. G be a group of all permutations of degree 3 or 3 symbols 1,2 \& 3
\therefore Order of $G=|G|=3!=6$
Given, $H=\{I,(1,2)\}$ is a subgroup of G.
\therefore Order of $\mathrm{H}=|H|=2!=2$
By Lagrange's Theorem, Index $=$ Number of different left cosets of subgroup $H=\frac{|G|}{|H|}=\frac{6}{2}=3$
Consider, Left coset of $(13) H=(13)\{I,(1,2)\}=\{(13) I,(13)(12)\}$

Now,
(13) $I=(13)($ since, I is the identity $)$
$(13)(12)=(123)$
$\therefore(13) \mathrm{H}=\{(13),(123)\}$
Similarly,
(23) $\mathrm{H}=(23)\{\mathrm{I},(12)\}=\{(23) \mathrm{I},(23)(12)\}$

Now,
$(23) \mathrm{I}=(23)($ since, I is the identity $)$
$(23)(12)=(132)$
$\therefore(23) \mathrm{H}=\{(23),(132)\}$
Hence, the three distinct cosets of H are $\mathrm{H},(13) \mathrm{H},(23) \mathrm{H}$ Index $=3$

6a) Show that $53^{103}+103^{53}$ is divisible by 39 .
Ans. We know, $53^{2}=2809=72 \times 39+1$
$\therefore 53^{2} \equiv 1(\bmod 39)$
$\therefore\left(53^{2}\right)^{51} \equiv 1^{51}(\bmod 39)$
$\therefore 53^{102} \equiv 1(\bmod 39)$
Multiply both side by 53,
$\therefore 53^{102} \times 53 \equiv 1 \times 53(\bmod 39)$
$\therefore 533^{103} \equiv 53(\bmod 39)$
$\therefore 53^{103} \equiv(1 \times 39+14)(\bmod 39)$
$\therefore 53^{103} \equiv 14(\bmod 39) \longrightarrow(1)$
Now, $103^{3}=10609=272 \times 39+1$
$\therefore 103^{2} \equiv 1(\bmod 39)$
$\therefore\left(103^{2}\right)^{26} \equiv 1^{26}(\bmod 39)$
$\therefore 103^{52} \equiv 1(\bmod 39)$
Multiply both sides by 103,
$\therefore 103^{52} \times 103 \equiv 1 \times 103(\bmod 39)$
$\therefore 103^{53} \equiv 103(\bmod 39)$
$\therefore 103^{53} \equiv(2 \times 39+25)(\bmod 39)$
$\therefore 103^{53} \equiv 25(\bmod 39) \longrightarrow(2)$
Adding (1) \& (2)

$$
\begin{gathered}
53^{103}+103^{53} \equiv(14+25)(\bmod 39) \\
\therefore 53^{103}+103^{53} \equiv 39(\bmod 39) \\
\therefore 53^{103}+103^{53} \equiv(1 \times 39+0)(\bmod 39) \\
\therefore 53^{103}+103^{53} \equiv 0(\bmod 39)
\end{gathered}
$$

$\therefore 53^{103}+103^{53}$ is divisible by 39 .

6b) Given $L=\{1,2,4,5,10,20\}$ with divisibility relation.
Verify that (L, \leq) is a distributive but not complimented Lattice.
Ans. The Hasse Diagram for L is

ENGINEERING

Consider $4 \vee 5=20$
$\therefore 2 \wedge(4 \vee 5)=2 \wedge 20=2$
Also,

$$
2 \wedge 5=1 \& 2 \wedge 4=2,
$$

$\therefore(2 \wedge 4) \vee(2 \wedge 5)=2 \vee 1=2$
$\therefore 2 \wedge(4 \vee 5)=(2 \wedge 4) \vee(2 \wedge 5)$
\therefore Distributive property is satisfied.
Consider $5 \wedge 10=5$
$\therefore 4 \vee(5 \wedge 10)=4 \vee 5=20$
Also,
$4 \vee 5=20 \& 4 \vee 10=20$,
$\therefore(4 \vee 5) \wedge(4 \vee 10)=20 \vee 20=20$
$\therefore 4 \vee(5 \wedge 10)=(4 \vee 5) \wedge(4 \vee 10)$
\therefore Distributive property is satisfied
$\therefore(\mathrm{L}, \mathrm{S})$ is a distributive Lattice.
(ii) By definition of a complement, $\mathrm{a} \vee \bar{a}=1$ and $\mathrm{a} \wedge \bar{a}=0$ i.e, $\mathrm{av} \bar{a}=20 \& \mathrm{a} \wedge \bar{a}=1$

The complements of elements of set L , are

Element	1	2	4	5	10	20
complement	20	-	5	4	-	1

\therefore Complement of each element do not exists.
$\therefore(\mathrm{L}, \leq)$ is not a complemented Lattice.

6c) Write the following permutation as the product of disjoint cycles. $F=\left(\begin{array}{ll}1 & 2\end{array}\right)(123)(12)$.

Ans. Given, $f=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)$

$$
\begin{aligned}
f(1)=\left(\begin{array}{ll}
1 & 2)
\end{array}\right. & \left(1 \begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)(1) \\
& =\left(\begin{array}{lll}
1 & 2
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)(2) \\
& =\left(\begin{array}{ll}
1 & 2
\end{array}\right)(3)
\end{aligned}
$$

$\therefore f(1)=(3)$

$$
\begin{aligned}
& f(2)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)(2) \\
& =(12)(123)(1) \\
& =(12)(2)
\end{aligned}
$$

$\therefore f(2)=1$

$$
\begin{aligned}
f(3)=\left(\begin{array}{ll}
1 & 2
\end{array}\right) & \left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)(3) \\
= & \left(\begin{array}{llll}
1 & 2
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3
\end{array}\right)(3) \\
= & \left(\begin{array}{lll}
1 & 2
\end{array}\right)(1)
\end{aligned}
$$

$\therefore f(3)=2$

$$
\therefore f=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
$$

Hence, expressing permutation f as the product of disjoint cycles we have

$$
f=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)
$$

ENGINEERING

6d) Express the expression ($x+y$) $(x+z)\left(x^{\prime} y^{\prime}\right)$ in the sum of product form.
Ans. Consider,

$$
\begin{aligned}
& (x+y)(x+z)\left(x^{\prime} y\right)^{\prime} \\
\equiv & {[(x+y)(x+z)]\left[\left(x^{\prime}\right)^{\prime}+y^{\prime}\right] } \\
\equiv & \text { (De Morgan Law) } \\
\equiv[(x+y)(x+z)]\left[x+y^{\prime}\right] & \text { (Involution Law) } \\
\equiv(x+z)(x+y)]\left(x+y^{\prime}\right) & \text { (commutative Law) } \\
\equiv(x+z)\left[(x+y)\left(x+y^{\prime}\right)\right] & \text { (Associative Law) } \\
\equiv\left(x+\left(y y^{\prime}\right)\right] & \text { (Distributive Law) } \\
\equiv(x+z)[x+0] & \text { (complement Law) } \\
\equiv(x+z)[x] & \text { (Identity Law) } \\
\equiv(x x+z x) & \text { (Distributive Law) } \\
\equiv(x+z x) & \text { (Idempotent Law) }
\end{aligned}
$$

Hence, $(x+y)(x+z)\left(x^{\prime} y\right)^{\prime} \equiv(x+z x)$, which is the sum- of - product form.

